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We analyze the stability of a quantum algorithm simulating the quantum dynamics of a system with different
regimes, ranging from global chaos to integrability. We compare, in these different regimes, the behavior of the
fidelity of quantum motion when the system’s parameters are perturbed or when there are unitary errors in the
guantum gates implementing the quantum algorithm. While the first kind of errors has a classical limit, the
second one has no classical analog. It is shown that, whereas in the firgtatassical errors) the decay of
fidelity is very sensitive to the dynamical regime, in the second €¢agmntum errorsy it is almost indepen-
dent of the dynamical behavior of the simulated system. Therefore, the rich variety of behaviors found in the
study of the stability of quantum motion under “classical” perturbations has no correspondence in the fidelity
of quantum computation under its natural perturbations. In particular, in this latter case it is not possible to
recover the semiclassical regime in which the fidelity decays with a rate given by the classical Lyapunov
exponent.
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[. INTRODUCTION promises to become the first application in which a quantum
Fidelity is a very convenient tool to characterize the staCOMPUter with only a few tens of qubits may outperform a
bility of quantum computation. It is defined a#(t) c!assllcgl c?]mputer. Indeedl, ?ff'c'?"ét quaptulm algontrms
_ 2 simulating the quantum evolution of dynamical systems like
Ko ¢0)] ,-where the ‘.WO state vecFo_r b//(t» and the baker’'s mag19], the kicked rotatoif20], and the saw-
| (t)) are obtained by evolving the same initial stéig),

der ideal or i foct i t tively. tooth map[21] have been found, and important physical
under igeal or imperfect quantum gates, reSpectively. Were ., ities could be extracted from these models already with
measures the imperfection strength and we assume that t

perturbed gates are still unitary. If the fidelity is close to 1,'- s than 10 qubitf22-24. Therefore, these quantum algo-

. : thms may constitute the ideal software for short- an
the results of the quantum computation are close to the |de<?]\] y €0 ute the ide ° e for Sno d

hile. iff is significantl ller than 1. th ¢ edium-term quantum computers operating with a small
ones, while, I 1S signincantly smaller than 2, then quantum ,  per of qubits and the most suitable testing ground for
computation does not provide reliable results.

e ... investigating the limits to quantum computation due to im-
rl]\/lor_e generaltl_)t/ th? f'det“t%(alio ca}[ll_ed t:]he I,oncm?'?rt] perfections and decoherence effects. In this context, we point
echg is a quantity of central interest in the study of the , ; yhat the fidelity of quantum computation has been evalu-
stability of dynamical systems under perturbatidds-18§].

ST ) o X ; X ated for the quantum baker’s map using a three-qubit NMR-
The decay of fidelity in time exhibits a rich variety of differ- | - quantum processf25]. We also note that efficient

ent behaviors, from Gaussian to exponential or power-law, ,-nt/m algorithms to compute the fidelity have been pro-
decay, depending, e.g., on the chaotic or integrable nature @fycaq in Refs[26,27.

the system under investigation, on the initial stateherent From the viewpoint of computational complexity, the fol-
state, mixture, etg, and, for integrable systems, on the shapejowing question naturally arises: given a generic dynamical
of the perturbation and on initial conditions. In particular, in system, is it possible to find its solution at tirmefficiently,
the chaotic, semiclassical regime and for strong enough pefncluding into consideration unavoidable computational er-
turbations, it has been shown that the decay rate is perturb@ors? We recall that the classical dynamics of chaotic systems
tion independent and determined by the Kolmogorov-Sinajs characterized by exponential sensitivity: any amount of
entropy, related to the Lyapunov exponent of classical chaerror in determining the initial conditions diverges exponen-
otic dynamics[2]. tially, with the rate given by the largest Lyapunov exponent
On the other hand, the simulation of the quantum dynama . This means that, when following a given orbit, one digit
ics of models describing the evolution of complex systemspf accuracy is lost per suitably chosen unit of time. There-
fore, to be able to follow one orbit up to timeccurately, we
must inputO(t) bits of information to determine initial con-

*Electronic address: d.rossini@sns.it ditions. On the other hand, the orbit of a non-chaotic system
"Electronic address: giuliano.benenti@uninsubria.it is much easier to simulate, since errors only grow linearly
*Electronic address: giulio.casati@uninsubria.it; URL: http:// with time. Owing to the exponential instability, classical cha-
scienze-como.uninsubria.it/complexcomo otic dynamics is in practice irreversible, as shown by
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Loschmidt echo numerical simulations of RE28]: if, start-
ing from a given classical distribution in phase space, we
simulate the dynamical evolution up to timend then, by
inverting at timet all the momenta, we follow the backward
evolution, we do not recover the initial distribution at time
2t. This is because any amount of numerical error in com-
puter simulations rapidly effaces the memory of the initial
conditions. On the contrary, the same numerical simulations
in the quantum case show that time reversibility is preserved
in the presence of small errors.

In view of the above considerations, it is natural to inquire
whether the degree of stability of a quantum algorithm de-
pends on the naturghaotic or nonchaotjcof the simulated

dynamics. We will show that the decay of the fidelity of a G, 1. Poincaré cross sections for the classical sawtooth map in
quantum algorithm in the presence of perturbations in thene quasi-integrable regime Kt=-0.5. We show seven trajectories
quantum gates is almost independent of the dynamical bénside the integrable islands and a single trajectory filling the
havior of the simulated system. anomalously diffusive region.

In this paper, we will consider a quantum system, the

so-called sawtooth map, which can be simulated efficientlyynging from integrability to chaos, and interesting physical
on a quantum computer and whose underlying classical dyshenomena like normal and anomalous diffusion, dynamical
namics, depending on system’s parameters, can be chaotic fcalization, and cantori localizatidi29—33.
nonchaotic. We will outline the main differences that occur The sawtooth map is a periodically driven dynamical sys-
in calculating the fidelity decay with “classical” and “quan- tem, described by the Hamiltonian
tum” perturbations on the dynamical system.

(i) By classical perturbationswe mean perturbations of ) 5 4
the system’s parameters that have a classical limit. For in- H(6,n,t) = n~_ k(6 - m) s st-jT) (1)
stance, in this paper we perturb, at each map step of the Y 2 2 = '
sawtooth model, the kicking strengkhby a small amount

Sk(t) <k, wheret measures the number of map iterations.\yhere (n, 6) are the conjugated action-angle variabl@s
Note that this kind of perturbation, when applied to the clas-< g« 27). The time evolutiort—t+T of this system is clas-
sical motion, disturbs a given orbit by a sma_II amount at eac@ica”y described by the map
map step and therefore, to some extent, mimics the presence
of round-off errors in a classical computer. o — o
(i) By quantum perturbationsve mean errors introduced n=n+k(6-m), 6=06+Tn, 2
at each quantum gat@n this paper, we consider unitary,
memoryless errojs These quantum errors are unavoidablewhere the overbars denote the variables after one map itera-
during a quantum computation, due to the imperfect controtion. By rescalingn— p=Tn, the classical dynamics is seen
of the quantum computer hardware, and they do not have @ depend only on the paramet€+kT. The classical motion
classical analog. We will show that the fidelity decay evalu-is stable for -4<K<0 and completely chaotic foK <-4
ated with quantum errors is not capable of distinguishingand K>0: the maximum Lyapunov exponent ls=In[(2
between the classically integrable or chaotic nature of the-K+K2+4K)/2] for K>0, A=In|(2+K—-K?+4K)/2| for
simulated dynamics, being essentially independent of it. K <-4, andA=0 for -4<K<=0. As shown in Fig. 1, in the
This paper is organized as follows. In Sec. Il, we briefly stable, quasi-integrable regime, the phase space has a com-
describe the sawtooth map model and a quantum algorithrplex structure of elliptic islands down to smaller and smaller
which efficiently simulates it. We also introduce our quantumscales. Note that the integrable islands are surrounded by a
and classical error models and discuss how to efficienthnonintegrable region and that each trajectory diffuses
evaluate the fidelity on a quantum computer. In Sec. lll,(anomalously in this region. The casekK=0,-1,-2,-3,
based on extensive numerical simulations, we analyze the4 are integrable.
differences between the fidelity decay in the presence of The guantum evolution in one map iteration is described
classical and quantum error. Finally, in Sec. IV we presenpy the unitary operato:
our conclusions.

|Z> — 0| W) = e iTI2gik(6 = 71-)2/2‘ ), (3)
Il. PERTURBED QUANTUM SAWTOOTH MAP MODEL
In order to illustrate the striking differences between thewhere[ 0,A]=i, Ai=—idl 96, and|y(6+2m))=|4(6)). Note that
fidelity decays induced by classical and quantum errors, heree have setZi=1. We study this map on the torus 0
we consider the quantum sawtooth map model. This map iss <2, —w=<p<a. The effective Planck constant is given

one of the most extensively studied dynamical systems, sinday 7.z=T. Indeed, if we consider the operafor Th (p is the
it exhibits a rich variety of different dynamical regimes, quantization of the classical rescaled actmnwe have
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[6,0]=T[6,A] =T = ifiey. 4) j0><0] Measurement
The classical limitfig;— O is obtained by taking— <« and P W
T—0, while keepingK=KkT constant. We consider Hilbert
spaces of dimensioN=2%, wheren, is the number of qu- FIG. 2. Scattering circuit. The top line denotes a single ancillary
bits, and sefl=2/N. Thereforefies 1/N=1/2" drops to  qubit, the bottom line a set af, qubits,H the Hadamard gate, and
zero exponentially with the number of qubits. W a unitary transformation.

The operato can be written as the product of two op-
eratorsU, =k~ %2 and U;=e"T2. SinceU, is diagonal that the errors affecting different quantum gates are com-

in the @ representation, whil&); is diagonal in then repre-  Plétely uncorrelated every time we apply a noisy gate, the
sentation, the most convenient way to simulate &mn a dephasing parameters randomly fluctuate m(fhed) inter-
classical computer is based on the forward-backward fasta! [~€,+€l. We note that the memoryless unitary error
Fourier transform betweef and n representations and re- model has been widely investigated in the literature; see,
quiresO(N log N) operations per map iteration. The quantum€-9., Refs[35-39. _

computation takes advantage of the quantum Fourier trans- We will compare the effect of noisy gat€sjuantum er-
form and need©((log N)2) one- and two-qubit gates to ac- rors”) V\{Ith that of randomly fluctuatmg perturbationis the
complish the same tagR1,22. More precisely, it needsrg system’s parametei$classical errors). Here we choose to

Hadamard gates andn3-n, controlled-phase shift gates. perturb the kicking strengtk in Eg. (2) as follows: at each

Therefore, the resources required to the quantum computer fB2P stepk is slightly changed by a small amouak(®),

simulate the evolution of the sawtooth map are only logarith\Which is randomly chosen in the intervitok, 5k]. Conse-

mic in the system sizeN, and there is an exponential duently, SK(t)=Tok(t) € [-oK, + K], where SK=Tdok. As

speedup, as compared to the best known classical computé® have discussed in the Introduction, this perturbation mod-

tion. els, to some extent, the effect of round-off errors in classical
Any experimental realization of a quantum computer ha§0mpUt§t'0n- _ o -

to face the problem of errors, which inevitably set limitations ~We will consider the following initial conditions.

to the accuracy of the implemented algorithms. These errors (i) A coherent Gaussian wave packet

can be due to unwanted couplings with the environment or to N-1
imperfections in the quantum hardware. In this paper, we lo)a= AS e—(n-no>2’2"2+i<"‘”0/2>”0|n> (5)
limit ourselves to consideunitary errors modeled bynoisy e e ’

gates Such noise results from the imperfect control of the .

quantum computer. For instance, in a NMR quantum comwhere(6,,n) is the center of the wave packgi)=6,,(Nn)
puter the logic gates on qubits are simulated by applying=n;), A a normalization constant, and?=(An)2=((f
magnetic fields to the system. If the direction or the intensity_()2) the variance in the momentum representati@].
of the fie_lds is not correct, a sli_ghtly different gate is applied,\ye choosa?=N/(2xL) in order to obtain an equal value for
though it remains unitary. In ion-trap quantum processorsy,, variances irp and in 6—namely, AGAp=Fig, with A8

laser pulses are used to implement sequences of quantughp:\;heﬁ_ The wave vecto(5) is the closest quantum ana-
gates[34]. Fluctuations in the duration of each pulse |nduce|og of a classical probability density, localized in a small

unitary errors, which accumulate during a quantum COMPUiegion of the phase space, centereddg,py) and of width

tation. o. We point out that, as shown in R¢g#i1], it is possible to

. X r‘lirepare efficiently a coherent state on a quantum computer.
tum algorithm for the sawtooth map requires controlled- (i) A random wave VeCtot¢0>R:szlcn|n>v where the

phase shift and Hadamard gaféd,23. We choose to per- coefficientsc, have amplitudes of the order of {\ (to as-

turb them as follows. Controlled-phase shift gates are o
: . . . 2 sure the normalization of the wave veotaand random
diagonal in the computational basis and act nontrivially only : .
hases. This state has no classical analog.

on the four-dimensional Hilbert subspace spanned by tw The fidelity of quantum motion can be efficiently evalu-

qubits. In this subspace, we write each controlled-phase Sh'gted on a quantum computer, as discussed in [26]. Here

gate asC=£C, whereC is the ideal gate and the diagonal \ye show an alternative method, based on the scattering cir-
perturbation is given byE=diage'©,e't,e/2,&%). There-  cyit drawn in Fig. 2[42,43. This circuit has various impor-
fore, the unitary error operatof introduces unwanted tant applications in quantum computation, including
phases. The Hadamard gate can be seen as a rotation of {gantum-state tomography and quantum spectros¢4gly
Bloch sphere through an anglé=7 about the axisl, |t ends up with a polarization measurement of just the ancil-
=(sin 6 cOS¢by, Sin b Sin by, COSOy), where fo=7/4 and  |ary qubit. We measure, or oy, and the average values of
$o=0, so thatly=(1/v2,0,1~2). Since each one-qubit gate these observables are

can be seen as a rotation about some aximitary errors tilt . .

the rotation angle:ly— 0=(sin # cose¢,sin fsin ¢, cosb), (o) =R4Tr(Wp)], (oy)=Im[Tr(Wp)], (6)
where 6= 6y+ v, and ¢= ¢+ v,. We assume that the dephas- . .
ing parameters;, v; (i=1,...,4,j=1,2), are randomly and where(o,) and(o,) are the expectation values of the Pauli

uniformly distributed in the intervdl-¢, ]. We also assume spin operatorsr, and o, for the ancillary qubit, andV is a
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unitary operator acting ony qubits, initially prepared in the 10°r=T
statep (see Fig. 2 These two expectation values can be
obtained(up to statistical erropsf one runs several times the

scattering circuit. If we sep=|){| and\?V:(Ut)TfJ‘E, it is 107
easy to see that c |
e I
10 = Kol (WY UL gl = [Tr(Wp) P = (0)? + ()2, (7) oifE
For this reason, provided that the quantum algorithm imple-
mentingU is efficient, as is the case for the quantum saw- .
tooth map, the fidelity can be efficiently computed by means 105200400 t 500 8001000

of the circuit shown in Fig. 2.

FIG. 3. Fidelity decay for the quantum sawtooth map with
IIl. RESULTS AND DISCUSSION =12 qubits, in the presence of a classical fluctuating perturbation in
Hereafter we will callf (t) and fq(t) the fidelity decays the k pare_tmeter. '[he initial condition is a Gaussian wave pac_ket
induced by classical or quantum errors, respectively. Cemered.'d%’p‘))_(l’o)i Thf Upper curve Sh.OWS the behavn_or n
Let us first consider the fidelity decdy(t), obtained un- the quas"'r_]tegrablg, regimi=-0.5, Wlth maximum perturpatlon
. . . strengthdK =4 X 107, the lower one is obtained by simulating the
der fluctuating pe_rturbanons in the para_mekenf the saw- map in the chaotic regim&=0.5, with K=2x 104 In the inset
tooth map. We will show that, under this type of perturba-e piot the same curves in a graph showing ggversus time.
tion, the fidelity decay exhibits a marked dependence on th@ne straight lines correspond to exponential fidelity decay
simulated dynamics. In particular, qualitatively different be- —jogf_t, upper ling and Gaussian decag-log f.=t? lower
havi_ors are observed depending on the chaotic or nonchaotjge). Here and in the following figures the logarithms are decimal.
motion.
We first consider theuasi-integrable regime4<K=<0.  thjs case the fidelity decay is again Gaussian, but in general
In this case the sawtooth map behaves, inside the main intg-shows large random fluctuations from the Gaussian profile
grable island with fixed point¢,p)=(,0) (see Fig. }, asa (see, for example, the upper curve in Fig, &hich depend
harmonic oscillator, with characteristic frequencyk  on the noise realization. Moreover, the distance between the
=wy/2m=\-K/2m. Therefore, in the semiclassical regime centers of the two wave packets growssyt, and therefore
the quantum motion of coherent wave packets residing insidghe Gaussian decay starts after a time stater?/ Svy.
integrable islands closely follows the harmonic evolution of  Moreover, the fidelity decay depends not only on the
the corresponding classical t@lectories. In the central islanghape of the initial state, but also on its position. Indeed,
this motion has period@=27/+-K, while in the outer islands inside any integrable island the frequency’s perturbation
the period is multiplied by a factor which depends on thegvK:VKm(_,,Kngmm;TK is independent of the position
order of the corresponding resonan¢ies example, the two  of the wave packet in phase space. Since larger orbits imply
upper islands in Fig. 1 correspond to a second-order resg larger velocity and, consequently, a larger relative ballistic
nance, and inside them the period is doubled motion of the two wave packets, the fidelity drops faster
Since the chosen perturbation affects the parantetéie  when we move far from the center of the integrable islands.
fidelity f.(t) is obtained as the overlap of two wave packetsThis is confirmed by our numerical dataot shown herg
which move inside an integrable island with slightly different  |n the chaotic regimethe fidelity f.(t) always decays ex-
frequencies. In this case, we knd®,44 that for a static  ponentially, and an example of such decay is given in Fig. 3.
perturbatior{ 8K(t) = 5K] the centers of the two wave packets For small perturbations, in the chaotic regime the decay rate
separate ballisticallylinearly in time) and a very fast decay TI'«(8K)?, as predicted by the Fermi golden rule. However, if
of quantum fidelity is expected as far as the distance betweege perturbation is strong enough, the fidelity decay follows a
the centers of the two packets becomes larger than thedemiclassical regime, in which the decay rate is perturbation
width 0. The type of decay is related to the shape of theindependent and equal to the Lyapunov exponent of the un-
initial wave packet. In particular, for a Gaussian wave packetierlying classical dynamiosee inset of Fig. % The condi-
a Gaussian decay is expectedsii = vi.x— vk denotes the  tion to observe the Lyapunov decay is that the perturbation
frequency separation between perturbed and unperturbast quantally strong—namely, that it couple many levels
motion, the Gaussian decay takes place after a ttgne (sk>1)—but classically weaksk<k).
x ol Svy. To summarize, the fidelity decay induced by classical per-
In this paper, we consider the case of a randomly fluctutyrpations strongly depends on the dynamical regime, cha-
ating perturbationdK(t) e [-oK, 8K]. Therefore, the fre- otic or integrable. The two qualitatively different behaviors
quency vt Of a classical trajectory following the per- (exponential or Gaussian degare shown in Fig. 3. Notice
turbed dynamics is not constant. The relative displacement aflso that the regular dynamics turns out to be much more
this orbit with respect to the one described by the unperstable than the chaotic oné represent both cases in the
turbed dynamics(with a frequencywvy) is approximately same figure, the perturbation value chosen in the chaotic case
given by a Brownian motion. The separation between thds 20 times smaller than the one chosen in the integrable
two orbits is proportional to the frequency differengég. In case.

056216-4



CLASSICAL VERSUS QUANTUM ERRORS IN QUANTUM.. PHYSICAL REVIEW E 70, 056216(2004)

ment one step of the sawtooth map is expected:
fq(t) ~ e—Ft ~ e—Cezngt’ (8)

whereC=0.28 is a constant which we have computed from
our numerical data. We have determined the characteristic
time scalet; for fidelity decay from the conditioriy(t;)=A
=0.9 (note that the value chosen féris not crucia). Our
numerical calculations, shown in Fig. 5, clearly demonstrate
that

1
t; o 202 9
g

FIG. 4. Fidelity decay for noisy gates in the sawtooth map withj, agreement with Eq(8).

— — : — 2 2 2 . . . . .
K=0.1,ng=12. From right 1o lefte=1.5x 107, 3x 10", 4x 107 The fidelity decay in the chaotic reginaways follows
5x10°7%, 6x10°, 7.5} 10°% 10, 1.5X 107", Inset: fidelity decay  yhq axponential behavior predicted by the Fermi golden rule.
for uncorrelated perturbations in the paramétdfrom right to left, o afora in contrast with the case of classical errors, there

— — 3 3 3 2 2 2
‘SK'T'S;('SXHT , 5107 7.5} 10°%, 107 1.5X100 N .?’.X 107 ._Is no saturation of the decay rate to the largest Lyapunov
5X107“ In both graphs, data are averaged over 50 initial Gaussian :
ponent of the systeigsee Fig. 4.

wave packets. The two dashed lines show the Lyapunov exponentlglx_l_hiS result can be understood from thenlocality of

decay:f(t)=e™, wherex=0.315 is the classical Lyapunov expo- : .
nent )(lzor(r();"sponding =01 yap P quantum errors: each noisy gate can make direct transfer of

probability on a large distance in phase space. This is a con-
sequence of the binary encoding of the discretized angle and

We now analyze the fidelity behavior in the presence ofy,omentum variables. For instance, we represent the momen-
natural errors for quantum computation—namegndom . eigenstatedn) (-N/2<n<N/2) in the computational
unitary perturbationsof amplitude e on quantum gates- basis as |a, - a,ay), where a;c{0,1 and n=-N/2

n, ’ ] ] -

following the noise model described in Sec. II. +N2?glaj2‘i. % we take, sayn,=6 qubits(N=25=64), the

As shown in Figs. 4 and 5, in thehaotic regimethe
fidelity f(t) d tially, with tB o €2n2 [45]. state|000000 corresponds ttn=-32) (p=-m), |000002 to
idelity fq(t) drops exponentially, with a ratBe: mnj [45] In=-31) [p=-7+2m(1/2%], and so on until111113, cor-

This decay can be understood from the Fermi golden rule’ . _ ~ .
each noisy gate transfers a probability of ora@rfrom the ~fesponding tn=31) [p=-m+2m(63/2°)]. Let us consider

ideal unperturbed state to other states. Due to the fact thdf€ Simplest quantum error, the bit flip: if we flip the less
perturbations acting on two different gates are completelyp'gnificant qubit(a;=01), we exchgng_é_n} with |n_+1>
uncorrelated, an exponential decay rate proportionaé?to (mod N), while, if we flip the most significant qubitay,
and to the number of gateg=3n2+n, required to imple- =0<1), we exchangén) with [n+32) (mod N). It is clear

that this latter error transfers probability very far in phase
T e T B m e space and cannot be reproduced by classical local errors.
ak i Therefore, no semiclassical regime for the fidelity decay is
expected with quantum errors. In particular, the nonlocality
of perturbations makes the fidelity insensitive to the rate of
local exponential instability, given by the Lyapunov expo-

&t 1 nent.
§° 2r . The most striking feature of the fidelity decay induced by
quantum errors is that it is substantially independent of the
1= J chaotic or nonchaotic nature of the underlying classical dy-

namics. An example of this behavior is shown in Fig. 6 and
ok . . 1 strongly contrasts With_what obtair_1ed by pert_urbi_ng the sys-
S . ! tem’s parametergsee Fig. 3. In particular, the fidelity decay
log(gzn 2) for integrable dynamics is exponential, as shown in Fig. 6.
4 We note that in Ref[26] it was pointed out that even clas-

FIG. 5. Characteristic time scatefor the fidelity decay, deter- sically regular models can eXhibit an exponential fide”ty de-
mined by the conditiorf(t;)=0.9, in the sawtooth map #=5, for ~ C&- If we start from a Gaussian wave packet, integrable
the case of random noise errors in quantum gates. The data afyN@mics turns out to be a little more stable than chaotic
obtained for different perturbation strengthand number of qubits: qynam'CS we numeflca”y O_btalned a ratio of th? decay rates
ng=4 (open circley, 5 (solid circleg, 6 (open squargs 7 (solid N the chaotic and in the m_tegrable case which oscillates
squarey 8 (open triangles 9 (solid triangles, and 10(solid dia-  between 1.15 and 1.4, for different valuesrgfbetween 5
monds. The straight line shows the dependerge0.126/°n;,  and 16 and for various ranging from 10° to 10°%.

corresponding to the exponential fidelity deq@y, with C=0.28. We stress that the smaller decay rate obtained when we
The initial state is in all cases a Gaussian wave packet and data aevolve a Gaussian wave packet inside an integrable island is
averaged over 50 noise realization. not due to the lack of exponential instability but simply to
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[ ® et v b ] K
10 0 200 400 600 800 1000 quasi-integrable chaotic
t

o ) FIG. 7. Dependence of the fidelity decay rate, induced by quan-
FIG. 6. Fidelity decay for the quantum sawtooth map simulated, ,, uncorrelated unitary perturbations, & for n,=9, e= 102

with nq=12 qubits, in the presence of uncorrelazted unitary quantumrpe gashed line separates the quasi-integrable regicak< 0
errors with maximum perturbation strengt 107 As initial con- o the chaotic regiof > 0. As initial condition we choosé) a
dition we consider a Gaussian wave packet peakedf#Po)  Gaussian wave packet centered i, py)=(1,0) (circles (note that
=(1,0). The upper curve shows the behavior in the quasi-integrablg,. _4 K <0 this packet is inside the main integrable islgrid)
reglm'eK:—O.S, Whlle th.e lower one is optalned by simulating the 5 Gaussian packet centered (6, po)=(0,0) (squares—that is,
map in the chaotic regioi=0.5. In the inset we plot the same (egjging in the diffusive region, andii) a random wave function

curves, showing —log) versus time. The solid line corresponds t0 giamonds. All data are obtained after averaging over 25 different
exponential fidelity decay, that is —Idgt. noise realizations.

the fact that the dynamics preserves the coherence of thgors strongly depends on the dynamical nature of the sys-
wave packet. This can be clearly seen from the data of Fig. %em under investigation and on initial conditions, gquantum
(i) In the chaotic regime K-0 (Lyapunov exponent gprors act in a way essentially independent of the system’s
A>0), the fidelity decay rate is independent of the initial yynamics. This practical insensitivity to the dynamics is
state(Gaussian packet or random spagnd of the rate of eyentually a consequence of the intrinsic nonlocality of the
exponential instability. Indeed, the decay rate is independentyrors that naturally affect the quantum computation. As a
of K, while A depends orK. _ consequence, the rich variety of behaviors found in the study
(if) In the quasi-integrable regime-4 <K <0 (LyapunoVv  of the stability of quantum motion under perturbations of the
exponent=0), only in the case in which we choose as ini- system’s Hamiltoniarj1-18 has no correspondence in the
tial state a Gaussian packet placed inside an integrable islag elity of quantum computation under its natural perturba-
do we obtain a fidelity dec_:ay rate smaller than in the chaotiqions_ The stability of quantum computation is essentially
case. On the other hand, if we start from a random state or {,gependent of the chaotic or integrable behavior of the
we place the Gaussian wave packet inside the anomalouslymyated dynamics. This conclusion is simply based on the
diffusive region, we obtain the same decay rate as in thgonocality of quantum errors and therefore we expect that it
chaotic case. remains valid also in the case of nonunitary quantum noise
From these results, we conclude that the decay rate doggd/or when errors, correlated or memoryless, act not only
not depend on the value of the Lyapunov exponent. In shory, the qubits on which we apply a quantum gate but on all

the decay of the fidelity due to nqisy gatesridependent of  he qubits that constitute the quantum computer.
the presence or lack of exponential instabilifys]. We point

out that we have checked that this statement remains valid

also for static errors, like in the case in which the dephasing ACKNOWLEDGMENTS
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