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We analyze the stability of a quantum algorithm simulating the quantum dynamics of a system with different
regimes, ranging from global chaos to integrability. We compare, in these different regimes, the behavior of the
fidelity of quantum motion when the system’s parameters are perturbed or when there are unitary errors in the
quantum gates implementing the quantum algorithm. While the first kind of errors has a classical limit, the
second one has no classical analog. It is shown that, whereas in the first case(“classical errors”) the decay of
fidelity is very sensitive to the dynamical regime, in the second case(“quantum errors”) it is almost indepen-
dent of the dynamical behavior of the simulated system. Therefore, the rich variety of behaviors found in the
study of the stability of quantum motion under “classical” perturbations has no correspondence in the fidelity
of quantum computation under its natural perturbations. In particular, in this latter case it is not possible to
recover the semiclassical regime in which the fidelity decays with a rate given by the classical Lyapunov
exponent.
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I. INTRODUCTION

Fidelity is a very convenient tool to characterize the sta-
bility of quantum computation. It is defined asfstd
= ukcstd ucestdlu2, where the two state vectorsucstdl and
ucestdl are obtained by evolving the same initial stateuc0l,
under ideal or imperfect quantum gates, respectively. Heree
measures the imperfection strength and we assume that the
perturbed gates are still unitary. If the fidelity is close to 1,
the results of the quantum computation are close to the ideal
ones, while, iff is significantly smaller than 1, then quantum
computation does not provide reliable results.

More generally the fidelity(also called the Loschmidt
echo) is a quantity of central interest in the study of the
stability of dynamical systems under perturbations[1–18].
The decay of fidelity in time exhibits a rich variety of differ-
ent behaviors, from Gaussian to exponential or power-law
decay, depending, e.g., on the chaotic or integrable nature of
the system under investigation, on the initial state(coherent
state, mixture, etc.), and, for integrable systems, on the shape
of the perturbation and on initial conditions. In particular, in
the chaotic, semiclassical regime and for strong enough per-
turbations, it has been shown that the decay rate is perturba-
tion independent and determined by the Kolmogorov-Sinai
entropy, related to the Lyapunov exponent of classical cha-
otic dynamics[2].

On the other hand, the simulation of the quantum dynam-
ics of models describing the evolution of complex systems

promises to become the first application in which a quantum
computer with only a few tens of qubits may outperform a
classical computer. Indeed, efficient quantum algorithms
simulating the quantum evolution of dynamical systems like
the baker’s map[19], the kicked rotator[20], and the saw-
tooth map [21] have been found, and important physical
quantities could be extracted from these models already with
less than 10 qubits[22–24]. Therefore, these quantum algo-
rithms may constitute the ideal software for short- and
medium-term quantum computers operating with a small
number of qubits and the most suitable testing ground for
investigating the limits to quantum computation due to im-
perfections and decoherence effects. In this context, we point
out that the fidelity of quantum computation has been evalu-
ated for the quantum baker’s map using a three-qubit NMR-
based quantum processor[25]. We also note that efficient
quantum algorithms to compute the fidelity have been pro-
posed in Refs.[26,27].

From the viewpoint of computational complexity, the fol-
lowing question naturally arises: given a generic dynamical
system, is it possible to find its solution at timet efficiently,
including into consideration unavoidable computational er-
rors? We recall that the classical dynamics of chaotic systems
is characterized by exponential sensitivity: any amount of
error in determining the initial conditions diverges exponen-
tially, with the rate given by the largest Lyapunov exponent
l. This means that, when following a given orbit, one digit
of accuracy is lost per suitably chosen unit of time. There-
fore, to be able to follow one orbit up to timet accurately, we
must inputOstd bits of information to determine initial con-
ditions. On the other hand, the orbit of a non-chaotic system
is much easier to simulate, since errors only grow linearly
with time. Owing to the exponential instability, classical cha-
otic dynamics is in practice irreversible, as shown by
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Loschmidt echo numerical simulations of Ref.[28]: if, start-
ing from a given classical distribution in phase space, we
simulate the dynamical evolution up to timet and then, by
inverting at timet all the momenta, we follow the backward
evolution, we do not recover the initial distribution at time
2t. This is because any amount of numerical error in com-
puter simulations rapidly effaces the memory of the initial
conditions. On the contrary, the same numerical simulations
in the quantum case show that time reversibility is preserved
in the presence of small errors.

In view of the above considerations, it is natural to inquire
whether the degree of stability of a quantum algorithm de-
pends on the nature(chaotic or nonchaotic) of the simulated
dynamics. We will show that the decay of the fidelity of a
quantum algorithm in the presence of perturbations in the
quantum gates is almost independent of the dynamical be-
havior of the simulated system.

In this paper, we will consider a quantum system, the
so-called sawtooth map, which can be simulated efficiently
on a quantum computer and whose underlying classical dy-
namics, depending on system’s parameters, can be chaotic or
nonchaotic. We will outline the main differences that occur
in calculating the fidelity decay with “classical” and “quan-
tum” perturbations on the dynamical system.

(i) By classical perturbations, we mean perturbations of
the system’s parameters that have a classical limit. For in-
stance, in this paper we perturb, at each map step of the
sawtooth model, the kicking strengthk by a small amount
dkstd!k, where t measures the number of map iterations.
Note that this kind of perturbation, when applied to the clas-
sical motion, disturbs a given orbit by a small amount at each
map step and therefore, to some extent, mimics the presence
of round-off errors in a classical computer.

(ii ) By quantum perturbations, we mean errors introduced
at each quantum gate(in this paper, we consider unitary,
memoryless errors). These quantum errors are unavoidable
during a quantum computation, due to the imperfect control
of the quantum computer hardware, and they do not have a
classical analog. We will show that the fidelity decay evalu-
ated with quantum errors is not capable of distinguishing
between the classically integrable or chaotic nature of the
simulated dynamics, being essentially independent of it.

This paper is organized as follows. In Sec. II, we briefly
describe the sawtooth map model and a quantum algorithm
which efficiently simulates it. We also introduce our quantum
and classical error models and discuss how to efficiently
evaluate the fidelity on a quantum computer. In Sec. III,
based on extensive numerical simulations, we analyze the
differences between the fidelity decay in the presence of
classical and quantum error. Finally, in Sec. IV we present
our conclusions.

II. PERTURBED QUANTUM SAWTOOTH MAP MODEL

In order to illustrate the striking differences between the
fidelity decays induced by classical and quantum errors, here
we consider the quantum sawtooth map model. This map is
one of the most extensively studied dynamical systems, since
it exhibits a rich variety of different dynamical regimes,

ranging from integrability to chaos, and interesting physical
phenomena like normal and anomalous diffusion, dynamical
localization, and cantori localization[29–33].

The sawtooth map is a periodically driven dynamical sys-
tem, described by the Hamiltonian

Hsu,n,td =
n2

2
−

ksu − pd2

2 o
j=−`

+`

dst − jTd, s1d

where sn,ud are the conjugated action-angle variabless0
øu,2pd. The time evolutiont→ t+T of this system is clas-
sically described by the map

n̄ = n + ksu − pd, ū = u + Tn̄, s2d

where the overbars denote the variables after one map itera-
tion. By rescalingn→p=Tn, the classical dynamics is seen
to depend only on the parameterK=kT. The classical motion
is stable for −4øKø0 and completely chaotic forK,−4
and K.0: the maximum Lyapunov exponent isl=lnfs2
+K+ÎK2+4Kd /2g for K.0, l=lnus2+K−ÎK2+4Kd /2u for
K,−4, andl=0 for −4øKø0. As shown in Fig. 1, in the
stable, quasi-integrable regime, the phase space has a com-
plex structure of elliptic islands down to smaller and smaller
scales. Note that the integrable islands are surrounded by a
nonintegrable region and that each trajectory diffuses
(anomalously) in this region. The casesK=0,−1,−2,−3,
−4 are integrable.

The quantum evolution in one map iteration is described

by the unitary operatorÛ:

uc̄l = Ûucl = e−iTn̂2/2eiksû − pd2/2ucl, s3d

wherefû ,n̂g= i, n̂=−i] /]u, anducsu+2pdl= ucsudl. Note that
we have set"=1. We study this map on the torus 0
øu,2p, −pøp,p. The effective Planck constant is given
by "eff=T. Indeed, if we consider the operatorp̂=Tn̂ (p̂ is the
quantization of the classical rescaled actionp), we have

FIG. 1. Poincaré cross sections for the classical sawtooth map in
the quasi-integrable regime atK=−0.5. We show seven trajectories
inside the integrable islands and a single trajectory filling the
anomalously diffusive region.
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fû,p̂g = Tfû,n̂g = iT = i"eff. s4d

The classical limit"eff→0 is obtained by takingk→` and
T→0, while keepingK=kT constant. We consider Hilbert
spaces of dimensionN=2nq, wherenq is the number of qu-
bits, and setT=2p /N. Therefore,"eff~1/N=1/2nq drops to
zero exponentially with the number of qubits.

The operatorÛ can be written as the product of two op-

eratorsÛk=eiksû −pd2/2 and ÛT=e−iTn̂2/2. SinceÛk is diagonal

in the u representation, whileÛT is diagonal in then repre-
sentation, the most convenient way to simulate map(3) on a
classical computer is based on the forward-backward fast
Fourier transform betweenu and n representations and re-
quiresOsN log Nd operations per map iteration. The quantum
computation takes advantage of the quantum Fourier trans-
form and needsO(slog Nd2) one- and two-qubit gates to ac-
complish the same task[21,22]. More precisely, it needs 2nq
Hadamard gates and 3nq

2−nq controlled-phase shift gates.
Therefore, the resources required to the quantum computer to
simulate the evolution of the sawtooth map are only logarith-
mic in the system sizeN, and there is an exponential
speedup, as compared to the best known classical computa-
tion.

Any experimental realization of a quantum computer has
to face the problem of errors, which inevitably set limitations
to the accuracy of the implemented algorithms. These errors
can be due to unwanted couplings with the environment or to
imperfections in the quantum hardware. In this paper, we
limit ourselves to considerunitary errors, modeled bynoisy
gates. Such noise results from the imperfect control of the
quantum computer. For instance, in a NMR quantum com-
puter the logic gates on qubits are simulated by applying
magnetic fields to the system. If the direction or the intensity
of the fields is not correct, a slightly different gate is applied,
though it remains unitary. In ion-trap quantum processors,
laser pulses are used to implement sequences of quantum
gates[34]. Fluctuations in the duration of each pulse induce
unitary errors, which accumulate during a quantum compu-
tation.

As we have stated above, the implementation of the quan-
tum algorithm for the sawtooth map requires controlled-
phase shift and Hadamard gates[21,22]. We choose to per-
turb them as follows. Controlled-phase shift gates are
diagonal in the computational basis and act nontrivially only
on the four-dimensional Hilbert subspace spanned by two
qubits. In this subspace, we write each controlled-phase shift

gate asC̃=EC, whereC is the ideal gate and the diagonal
perturbationE is given byE=diagseie0,eie1,eie2,eie3d. There-
fore, the unitary error operatorE introduces unwanted
phases. The Hadamard gate can be seen as a rotation of the
Bloch sphere through an angled=p about the axisû0
=ssinu0 cosf0, sinu0 sinf0,cosu0d, where u0=p /4 and
f0=0, so thatû0=s1/Î2,0,1/Î2d. Since each one-qubit gate
can be seen as a rotation about some axisû, unitary errors tilt
the rotation angle:û0→ û=ssinu cosf ,sinu sinf ,cosud,
whereu=u0+n1 andf=f0+n2. We assume that the dephas-
ing parametersei, n j si =1, . . . ,4 , j =1,2d, are randomly and
uniformly distributed in the intervalf−e ,eg. We also assume

that the errors affecting different quantum gates are com-
pletely uncorrelated: every time we apply a noisy gate, the
dephasing parameters randomly fluctuate in the(fixed) inter-
val f−e , +eg. We note that the memoryless unitary error
model has been widely investigated in the literature; see,
e.g., Refs.[35–39].

We will compare the effect of noisy gates(“quantum er-
rors”) with that of randomly fluctuating perturbationsin the
system’s parameters(“classical errors”). Here we choose to
perturb the kicking strengthk in Eq. (2) as follows: at each
map step,k is slightly changed by a small amountdkstd,
which is randomly chosen in the intervalf−dk,dkg. Conse-
quently, dKstd;TdkstdP f−dK , +dKg, where dK;Tdk. As
we have discussed in the Introduction, this perturbation mod-
els, to some extent, the effect of round-off errors in classical
computation.

We will consider the following initial conditions.
(i) A coherent Gaussian wave packet

uc0lG = Ao
n=0

N−1

e−sn − n0d2/2s2+isn−n0/2du0unl, s5d

wheresu0,n0d is the center of the wave packetskûl=u0,kn̂l
=n0d, A a normalization constant, ands2=sDnd2;ksn̂
−kn̂ld2l the variance in the momentum representation[40].
We chooses2=N/ s2pLd in order to obtain an equal value for
the variances inp and in u—namely,DuDp="eff, with Du
=Dp=Î"eff. The wave vector(5) is the closest quantum ana-
log of a classical probability density, localized in a small
region of the phase space, centered insu0,p0d and of width
s. We point out that, as shown in Ref.[41], it is possible to
prepare efficiently a coherent state on a quantum computer.

(ii ) A random wave vectoruc0lR=on=1
N cnunl, where the

coefficientscn have amplitudes of the order of 1/ÎN (to as-
sure the normalization of the wave vector) and random
phases. This state has no classical analog.

The fidelity of quantum motion can be efficiently evalu-
ated on a quantum computer, as discussed in Ref.[26]. Here
we show an alternative method, based on the scattering cir-
cuit drawn in Fig. 2[42,43]. This circuit has various impor-
tant applications in quantum computation, including
quantum-state tomography and quantum spectroscopy[43].
It ends up with a polarization measurement of just the ancil-
lary qubit. We measuresz or sy and the average values of
these observables are

kszl = RefTrsŴrdg, ksyl = ImfTrsŴrdg, s6d

wherekszl and ksyl are the expectation values of the Pauli

spin operatorsŝz and ŝy for the ancillary qubit, andŴ is a

FIG. 2. Scattering circuit. The top line denotes a single ancillary
qubit, the bottom line a set ofnq qubits,H the Hadamard gate, and
W a unitary transformation.
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unitary operator acting onnq qubits, initially prepared in the
stater (see Fig. 2). These two expectation values can be
obtained(up to statistical errors) if one runs several times the

scattering circuit. If we setr= uc0lkc0u andŴ=sÛtd†Ûe
t , it is

easy to see that

fstd = ukc0usÛtd†Û«
t uc0lu2 = uTrsŴrdu2 = kszl2 + ksyl2. s7d

For this reason, provided that the quantum algorithm imple-

mentingÛ is efficient, as is the case for the quantum saw-
tooth map, the fidelity can be efficiently computed by means
of the circuit shown in Fig. 2.

III. RESULTS AND DISCUSSION

Hereafter we will callfcstd and fqstd the fidelity decays
induced by classical or quantum errors, respectively.

Let us first consider the fidelity decayfcstd, obtained un-
der fluctuating perturbations in the parameterk of the saw-
tooth map. We will show that, under this type of perturba-
tion, the fidelity decay exhibits a marked dependence on the
simulated dynamics. In particular, qualitatively different be-
haviors are observed depending on the chaotic or nonchaotic
motion.

We first consider thequasi-integrable regime−4øKø0.
In this case the sawtooth map behaves, inside the main inte-
grable island with fixed pointsu ,pd=sp ,0d (see Fig. 1), as a
harmonic oscillator, with characteristic frequencynK

=vK /2p=Î−K /2p. Therefore, in the semiclassical regime
the quantum motion of coherent wave packets residing inside
integrable islands closely follows the harmonic evolution of
the corresponding classical trajectories. In the central island
this motion has periodT=2p /Î−K, while in the outer islands
the period is multiplied by a factor which depends on the
order of the corresponding resonances(for example, the two
upper islands in Fig. 1 correspond to a second-order reso-
nance, and inside them the period is doubled).

Since the chosen perturbation affects the parameterK, the
fidelity fcstd is obtained as the overlap of two wave packets
which move inside an integrable island with slightly different
frequencies. In this case, we know[9,44] that for a static
perturbationfdKstd=dKg the centers of the two wave packets
separate ballistically(linearly in time) and a very fast decay
of quantum fidelity is expected as far as the distance between
the centers of the two packets becomes larger than their
width s. The type of decay is related to the shape of the
initial wave packet. In particular, for a Gaussian wave packet
a Gaussian decay is expected. IfdnK;nK+dK−nK denotes the
frequency separation between perturbed and unperturbed
motion, the Gaussian decay takes place after a timets
~s /dnK.

In this paper, we consider the case of a randomly fluctu-
ating perturbationdKstdP f−dK ,dKg. Therefore, the fre-
quencynK+dKstd of a classical trajectory following the per-
turbed dynamics is not constant. The relative displacement of
this orbit with respect to the one described by the unper-
turbed dynamics(with a frequencynK) is approximately
given by a Brownian motion. The separation between the
two orbits is proportional to the frequency differencednK. In

this case the fidelity decay is again Gaussian, but in general
it shows large random fluctuations from the Gaussian profile
(see, for example, the upper curve in Fig. 3), which depend
on the noise realization. Moreover, the distance between the
centers of the two wave packets grows~ÎdnKt, and therefore
the Gaussian decay starts after a time scalets~s2/dnK.

Moreover, the fidelity decay depends not only on the
shape of the initial state, but also on its position. Indeed,
inside any integrable island the frequency’s perturbation
dnK=nK+dK−nK<dK /4pÎ−K is independent of the position
of the wave packet in phase space. Since larger orbits imply
a larger velocity and, consequently, a larger relative ballistic
motion of the two wave packets, the fidelity drops faster
when we move far from the center of the integrable islands.
This is confirmed by our numerical data(not shown here).

In the chaotic regime, the fidelity fcstd always decays ex-
ponentially, and an example of such decay is given in Fig. 3.
For small perturbations, in the chaotic regime the decay rate
G~ sdKd2, as predicted by the Fermi golden rule. However, if
the perturbation is strong enough, the fidelity decay follows a
semiclassical regime, in which the decay rate is perturbation
independent and equal to the Lyapunov exponent of the un-
derlying classical dynamics(see inset of Fig. 4). The condi-
tion to observe the Lyapunov decay is that the perturbation
be quantally strong—namely, that it couple many levels
sdk.1d—but classically weaksdk!kd.

To summarize, the fidelity decay induced by classical per-
turbations strongly depends on the dynamical regime, cha-
otic or integrable. The two qualitatively different behaviors
(exponential or Gaussian decay) are shown in Fig. 3. Notice
also that the regular dynamics turns out to be much more
stable than the chaotic one(to represent both cases in the
same figure, the perturbation value chosen in the chaotic case
is 20 times smaller than the one chosen in the integrable
case).

FIG. 3. Fidelity decay for the quantum sawtooth map withnq

=12 qubits, in the presence of a classical fluctuating perturbation in
the k parameter. The initial condition is a Gaussian wave packet
centered insu0,p0d=s1,0d. The upper curve shows the behavior in
the quasi-integrable regimeK=−0.5, with maximum perturbation
strengthdK=4310−3; the lower one is obtained by simulating the
map in the chaotic regimeK=0.5, with dK=2310−4. In the inset
we plot the same curves in a graph showing −logsfcd versus time.
The straight lines correspond to exponential fidelity decay
(−log fc~ t, upper line) and Gaussian decay(−log fc~ t2, lower
line). Here and in the following figures the logarithms are decimal.
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We now analyze the fidelity behavior in the presence of
natural errors for quantum computation—namely,random
unitary perturbationsof amplitude e on quantum gates—
following the noise model described in Sec. II.

As shown in Figs. 4 and 5, in thechaotic regimethe
fidelity fqstd drops exponentially, with a rateG~e2nq

2 [45].
This decay can be understood from the Fermi golden rule:
each noisy gate transfers a probability of ordere2 from the
ideal unperturbed state to other states. Due to the fact that
perturbations acting on two different gates are completely
uncorrelated, an exponential decay rate proportional toe2

and to the number of gatesng=3nq
2+nq required to imple-

ment one step of the sawtooth map is expected:

fqstd . e−Gt . e−Ce2ngt, s8d

whereC<0.28 is a constant which we have computed from
our numerical data. We have determined the characteristic
time scaletf for fidelity decay from the conditionfqstfd=A
=0.9 (note that the value chosen forA is not crucial). Our
numerical calculations, shown in Fig. 5, clearly demonstrate
that

tf ~
1

e2nq
2 , s9d

in agreement with Eq.(8).
The fidelity decay in the chaotic regimealways follows

the exponential behavior predicted by the Fermi golden rule.
Therefore, in contrast with the case of classical errors, there
is no saturation of the decay rate to the largest Lyapunov
exponent of the system(see Fig. 4).

This result can be understood from thenonlocality of
quantum errors: each noisy gate can make direct transfer of
probability on a large distance in phase space. This is a con-
sequence of the binary encoding of the discretized angle and
momentum variables. For instance, we represent the momen-
tum eigenstatesunl s−N/2øn,N/2d in the computational
basis as uanq

¯a2a1l, where a j P h0,1j and n=−N/2
+No j=1

nq a j2
−j. If we take, say,nq=6 qubitssN=26=64d, the

stateu000000l corresponds toun=−32l sp=−pd, u000001l to
un=−31l fp=−p+2ps1/26dg, and so on untilu111111l, cor-
responding toun=31l fp=−p+2ps63/26dg. Let us consider
the simplest quantum error, the bit flip: if we flip the less
significant qubitsa1=0↔1d, we exchangeunl with un+1l
(mod N), while, if we flip the most significant qubitsanq
=0↔1d, we exchangeunl with un+32l (mod N). It is clear
that this latter error transfers probability very far in phase
space and cannot be reproduced by classical local errors.
Therefore, no semiclassical regime for the fidelity decay is
expected with quantum errors. In particular, the nonlocality
of perturbations makes the fidelity insensitive to the rate of
local exponential instability, given by the Lyapunov expo-
nent.

The most striking feature of the fidelity decay induced by
quantum errors is that it is substantially independent of the
chaotic or nonchaotic nature of the underlying classical dy-
namics. An example of this behavior is shown in Fig. 6 and
strongly contrasts with what obtained by perturbing the sys-
tem’s parameters(see Fig. 3). In particular, the fidelity decay
for integrable dynamics is exponential, as shown in Fig. 6.
We note that in Ref.[26] it was pointed out that even clas-
sically regular models can exhibit an exponential fidelity de-
cay. If we start from a Gaussian wave packet, integrable
dynamics turns out to be a little more stable than chaotic
dynamics: we numerically obtained a ratio of the decay rates
in the chaotic and in the integrable case which oscillates
between 1.15 and 1.4, for different values ofnq between 5
and 16 and for variouse ranging from 10−5 to 10−1.

We stress that the smaller decay rate obtained when we
evolve a Gaussian wave packet inside an integrable island is
not due to the lack of exponential instability but simply to

FIG. 4. Fidelity decay for noisy gates in the sawtooth map with
K=0.1,nq=12. From right to lefte=1.5310−2, 3310−2, 4310−2,
5310−2, 6310−2, 7.5310−2, 10−1, 1.5310−1. Inset: fidelity decay
for uncorrelated perturbations in the parameterk. From right to left,
dK=Tdk=3310−3, 5310−3, 7.5310−3, 10−2, 1.5310−2, 3310−2,
5310−2. In both graphs, data are averaged over 50 initial Gaussian
wave packets. The two dashed lines show the Lyapunov exponential
decay: fstd=e−lt, wherel<0.315 is the classical Lyapunov expo-
nent corresponding toK=0.1.

FIG. 5. Characteristic time scaletf for the fidelity decay, deter-
mined by the conditionfstfd=0.9, in the sawtooth map atK=5, for
the case of random noise errors in quantum gates. The data are
obtained for different perturbation strengthse and number of qubits:
nq=4 (open circles), 5 (solid circles), 6 (open squares), 7 (solid
squares), 8 (open triangles), 9 (solid triangles), and 10(solid dia-
monds). The straight line shows the dependencetf .0.126/e2nq

2,
corresponding to the exponential fidelity decay(8), with C<0.28.
The initial state is in all cases a Gaussian wave packet and data are
averaged over 50 noise realization.
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the fact that the dynamics preserves the coherence of the
wave packet. This can be clearly seen from the data of Fig. 7.

(i) In the chaotic regime K.0 (Lyapunov exponent
l.0), the fidelity decay rate is independent of the initial
state(Gaussian packet or random state) and of the rate of
exponential instability. Indeed, the decay rate is independent
of K, while l depends onK.

(ii ) In the quasi-integrable regime−4,K,0 (Lyapunov
exponentl=0), only in the case in which we choose as ini-
tial state a Gaussian packet placed inside an integrable island
do we obtain a fidelity decay rate smaller than in the chaotic
case. On the other hand, if we start from a random state or if
we place the Gaussian wave packet inside the anomalously
diffusive region, we obtain the same decay rate as in the
chaotic case.

From these results, we conclude that the decay rate does
not depend on the value of the Lyapunov exponent. In short,
the decay of the fidelity due to noisy gates isindependent of
the presence or lack of exponential instability[46]. We point
out that we have checked that this statement remains valid
also for static errors, like in the case in which the dephasing
parametersei, n j appearing in our noise model are time in-
dependent.

IV. CONCLUSIONS

In this paper, we have compared the effects of classical
and quantum errors on the stability of quantum motion. The
main result is that, while the fidelity decay under classical

errors strongly depends on the dynamical nature of the sys-
tem under investigation and on initial conditions, quantum
errors act in a way essentially independent of the system’s
dynamics. This practical insensitivity to the dynamics is
eventually a consequence of the intrinsic nonlocality of the
errors that naturally affect the quantum computation. As a
consequence, the rich variety of behaviors found in the study
of the stability of quantum motion under perturbations of the
system’s Hamiltonian[1–18] has no correspondence in the
fidelity of quantum computation under its natural perturba-
tions. The stability of quantum computation is essentially
independent of the chaotic or integrable behavior of the
simulated dynamics. This conclusion is simply based on the
nonlocality of quantum errors and therefore we expect that it
remains valid also in the case of nonunitary quantum noise
and/or when errors, correlated or memoryless, act not only
on the qubits on which we apply a quantum gate but on all
the qubits that constitute the quantum computer.
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FIG. 6. Fidelity decay for the quantum sawtooth map simulated
with nq=12 qubits, in the presence of uncorrelated unitary quantum
errors with maximum perturbation strengthe=10−2. As initial con-
dition we consider a Gaussian wave packet peaked insu0,p0d
=s1,0d. The upper curve shows the behavior in the quasi-integrable
regimeK=−0.5, while the lower one is obtained by simulating the
map in the chaotic regionK=0.5. In the inset we plot the same
curves, showing −logsfqd versus time. The solid line corresponds to
exponential fidelity decay, that is −logfq~ t.

FIG. 7. Dependence of the fidelity decay rate, induced by quan-
tum uncorrelated unitary perturbations, onK, for nq=9, e=10−2.
The dashed line separates the quasi-integrable region −4øKø0
from the chaotic regionK.0. As initial condition we choose(i) a
Gaussian wave packet centered insu0,p0d=s1,0d (circles) (note that
for −4,K,0 this packet is inside the main integrable island), (ii )
a Gaussian packet centered insu0,p0d=s0,0d (squares)—that is,
residing in the diffusive region, and(iii ) a random wave function
(diamonds). All data are obtained after averaging over 25 different
noise realizations.
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